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Annotation. 

       

     Two concepts of infinity are known in the history of mathematics, these are Aristotelian and 

Cantorian. The last one was formulated by the author of the set theory G. Cantor about one and 

half century ago, and at the present time this concept is dominating. To elaborate his concept, 

Cantor used the so-called diagonal method for comparison of the cardinality of sets of infinite 

series with that of the natural series as much as the Cantor’s theorem about prevalence of the 

cardinality of the set of all subsets of any set A over the cardinality of A itself. In the present 

work it is shown by use of specific examples (i.e., ‘constructively’) that arguments used by 

Cantor are not quite rigorous and consequently the concept of unique potential infinity seems 

to be more acceptable. 

 

Millions of years will pass before 

we’ll be able to understand why we tend to 

cognize infinity. 

 P. Erdös. 

 

Introduction. 

The mathematics is rested on three pillars: zero, unit and infinity symbolized 

respectively as 0, 1 and . Their existence is usually postulated in the systems of axioms of 

logics and arithmetic’s. These notions are very capacious, intimately interrelated and go out far 

beyond the mathematics. The unit may be enlarged or be subdivided as much as desired. It is a 

seed of the natural number sequence emerging as a result of successive summation of unit with 

itself. The notion of mathematical infinity is used to symbolize the potential (virtual) result of 

this unlimited process. Ciphers 0 and 1 are enough to write down any natural number in binary 

number system: 
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and any proper fraction as dyadic expansion: 

.............0.0
2

1
1

2

1
2

2

1
1

2

1
0210 321

+++++= − nnn aaaaaaaaa ,             (2) 

where each an is equal to 0 or 1. For finite natural numbers the series (1) terminates at some 

finite index n, that is an =1, an+1= an+2 = … = 0. The number a is usually ‘read’ as follows: a = 

1an-1an-2…a0. The corresponding ‘finite’ fraction 0.a0a1…an-11 may be represented as ‘true 

infinite’ fraction according to the rule: 

0.a0a1 … an-11000… = 0.a0a1 … an-1 0111…                              (3) 

Each fraction may be considered as a point of the segment [0, 1], and the set of all fractions has 

a cardinality of the continuum c in the present-day treatment. Note also, that the set of infinite 

sequences a ≡ a0a1…ai…  may be symbolized as V∞, where V is the two-element set {0, 1}. 

 The notion infinity, widely used also outside the mathematics, is an item of perpetual 

discussions in the scientific community and within the general public. In the science it was 

thought since Aristotelian times that “infinity is always in the possibility and not in the 

actuality”. K. Gauss wrote in 1831: “I protest against the use of an infinity quantity as 

something completed; which is never permissible in mathematics”. This tradition was broken 

with by the founder of the set theory G. Cantor, who introduced the notion of the completed, 

‘actual’ infinity as opposed to the Aristotelian ‘potential infinity’. Cantor generalized the 

notion of the number of elements to the infinite sets by using the term cardinality (or cardinal 

number) of the set and the symbol  (aleph) to represent cardinalities of the infinite sets. 
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According to Cantor there exist (in the same sense as usual numbers) infinite sets with 

different cardinal numbers. The sequence of the cardinal numbers of the infinite sets in the 

order of their growth looks like 

012…,                                                           (4) 

where the minimal cardinal number 0 is a cardinality of the natural number sequence N. The 

series (4) must contain the cardinality of continuum c, which, according to Cantor, exceeds 0:  

c  0. The assumption c = 1 is called the continuum hypothesis. 

  Such radical intrusion to the foundations of mathematics met rather ambiguous 

responses from the prominent scientists of the end of 19-th and the beginning of 20-th 

centuries. Some contradictions (paradoxes) of the Cantor’s set theory were pointed out, and 

they were thought to be resolvable by the improvement of the logic of the mathematical 

reasoning. The efforts in this direction resulted in the foundation and development of 

mathematical logic. The proposed aim of this mathematical branch was the complete 

formalization of the processes of inference and proof (Hilbert’s program), which would allow 

to avoid errors and contradictions. The essential restrictions on the feasibility of this program 

were imposed by famous Gödel’s theorems about consistency and incompleteness of different 

systems of axioms. These theorems encourage the reconsideration of some nontransparent 

aspects of the set theory, such as, for instance, the system of alephs (4), which was 

characterized by H. Weyl as “the mist on the mist”. 

 The above-mentioned relation c  0 takes an important position in the theory of the 

cardinal numbers. In this work we present some reasons in favor of alternative relation, c = 0, 

that is, the power of continuum coincides with the cardinality of the natural number sequence. 

As a matter of fact, this is the return from the Cantor’s concept of infinity to Aristotelian, or 

rather the erasing the boundary between them. 

 Some support in favor of the unique infinity is provided by Cantor’s very definition of 

the set as “a collection of definite, distinguishable objects of our perception or our thought 

conceived as a whole”. The collection of ‘distinguishable’ objects may in principle be 

dissociated into elements and renumbered, that is, this set is denumerable (finite or countable). 

Or, in other words, for any two infinite Cantor’s sets one may initiate a potentially infinite 

process of composing of pairs of elements resulting in the one-to-one correspondence of these 

two sets. 

 Not every collection of objects satisfies Cantor’s definition of sets. For instance, since 

the creation of quantum mechanics the sets of identical particles which obey to the quantum-

mechanical concept of particle indistinguishability have come into the scientific practice. 

Some restrictions on the quantitative characteristics of the quantum-mechanical sets were also 

imposed by the Heisenberg’s principle of uncertainty. In quantum theory the notion of 

Observer is explicitly introduced, who regulates the measurement processes, and this is in 

harmony with inclusion of human perception and thought into the definition of sets. 

 The seeming paradoxicalness of the equality of continuum and natural number series 

cardinalities is evidently connected with the representation of these sets as a segment of the 

number axis and isolated points on this axis correspondingly. However, if one performs the 

following potentially infinite procedure on the segment: to throw out the middle one third of 

the initial segment, then the middle thirds of two remained parts of the initial segment and so 

on, then as a ‘result’ the so-called triadic set of Cantor (Cantor’s dust) emerges. An 

appearance of this set is like an infinite collection of points, but it has a cardinality of 

continuum. 

 In the first part of this essay, we consider formal aspects of some simple infinite 

‘universal’ table (UT), the separate fragments of which may serve as tables of truth functions 

of arbitrary number of arguments in the statement calculus – the introductory chapter of 

mathematical logic. This UT allows us to establish in a natural way the correspondence 

between the natural number sequence and the set of dyadic expansions (2), which potentially 

seems to be one-to-one. In the second part we discuss some consequences of the return to 
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Aristotelian standpoint, one of which is a certain symmetry between properties of naught (zero) 

and infinity. 

 

1. Truth functions in the statement calculus. 

 

 The aforementioned infinite table UT may be constructed formally without using logic 

terminology (table 1). Let us write down natural numbers in order as headings of the table 

columns. In column a we write digits ai used in the dyadic representation (1) of the number 

a. 

Table 1. Natural numbers in dyadic calculus. 

 

 0 1 2 3 … а … 

0 0 1 0 1 … а0 … 

1 0 0 1 1 … а1 … 

2 0 0 0 0 … a2 … 

… … … … … … … … 

i 0 0 0 0 … ai … 

… … … … … … … … 

 

The set of digits (a0, a1, … ai, …) may be referred not only to the natural number a (eq. (1)), 

but also to the dyadic fraction 0.a (2), presented as an infinite series, the consequent partial 

sums of which form the Cauchy sequence. The columns, considered as numbers, are 

arranged in increasing order from left to right, while the corresponding order of fractions 0.a 

seems at first to be chaotic.   The set of all fractions (2) includes (potentially) all real 

numbers of the segment [0, 1], so we (preliminarily) conclude that the sets of natural 

numbers and real numbers within the segment [0, 1] have equal cardinalities. This 

conclusion will be discussed in more details in the next section. 

      The interesting property of the table 1 is the periodicity of its rows. The zeroth row is 

periodical with the period of two: 0101… ≡ (01)∞, the first row has the period of 4: 

00110011… ≡ (0212)∞, the i-th row has the period of 2i+1: . Therefore, if we 

restrict ourselves with the first i rows of UT, the resulting structure will be periodic exactly 

with the period 2i+1, so it will be fully defined by the finite table containing the first i + 1 

rows and 2i+1 columns. This fragment of UT will be denoted as UT(i). The set of columns of 

UT(i) in fact coincides with the set Vi+1. This periodicity of UT allows us to conclude that it 

contains infinitely many Cauchy sequences with equal elements (partial sums) up to any 

arbitrarily high order. 

 Note that the tables UT(i) may serve as tables of the truth functions of an arbitrary 

number of arguments (‘letters’) in the statement calculus. 

 The ‘statement’ is a declarative sentence which may be qualified as truth (T) or false 

(F). In other words, it is some quantity A which may take two values: 0 (T) or 1 (F). Using 

different sentential connectives, it is possible to produce complex statements from more 

primitive ones. The truth or falsity of composed statements depends on the type of the 

connectives and the truth or falsity of the constituents. An arbitrary statement A may be 

considered as a function of several primitive statements (‘letters’) P1, P2, …, Pn, which 

independently take values 0, 1 (T, F): A = f (P1, …, Pn). For given values of letters p1, p2, 

…, pn (pi = 0 or 1) a function f takes the value f (p1, …, pn) which also equals 0 or 1. For 

given n the number of different arguments of a function f equals 2n and the number of 

different functions f equals 
n22 . In fact, these functions map the set Vn onto V, where V is 

the two-element set {0, 1}. The values of functions can be presented as a table with 2n rows 

and 
n22 columns. For n = 2 it is the table with 4 rows and 16 columns: 
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Table 2. Truth functions of two arguments. 

 
P2 P1 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

  0 |  P2  P1     P1  P2  & 1 

 

 

The table is arranged as follows. The rows are numbered by pairs i1i2, which may be 

considered as dyadic notation of natural numbers 0, 1, 2, 3: i = (i1i2) = i1·2
0 + i2·2

1. Each 

function fa is presented as a column a0 a1 a2 a3, corresponding to natural number a = 

a0·2
0+a1·2

1+a2·2
2+a3·2

3. So, the digit ai (= 0, 1) stands in the column a at i-th row. It is easy  

to see that the table 2 is a fragment UT (3) of the table 1; it consists of the elements of the 

first 4 rows and first 16 columns of that table.  

Some logic functions have special names and symbols indicated in the lower row of the 

table. For instance, f14(P, Q) = P&Q is a conjunction of statements P and Q; it is true only if 

both statements connected by the conjunction symbol are true. f8(P1, P2) = P1P2 is 

disjunction, f2(P1, P2) = P2  P1, f4(P1, P2) = P1  P2 are implications, f3(P1, P2) = P2 is 

negation of Р2, and so on. Note that the set of columns is closed under the operations of 

addition (mod 2) and multiplication, which allows us to replace logic operations by 

algebraic ones. We will not consider these aspects in detail since only the formal structure 

of tables is important for our goals. 

When the number of ‘letters’ exceeds 2 the table of truth functions quickly becomes 

immense, however the principles of their formation and their structure remain the same. At 

arbitrary n the number of different functions (table columns) is equal to
n22 , the height of 

columns (the number of rows) equals 2n, i.e., we deal with the fragment UT(2n-1) of UT. 

The following periodic columns serve as ‘letters’: Р1 = (010101…01) ≡ , Р2 = 

(00110011…0011) ≡ , Р3 = (00001111…00001111) ≡ ,…, Рn = 

(00…011…1)  ≡   (2n-1 zeros and the same number of units). The function fa 

is a column (a0, a1, … ai, …, a2
n

-1), where coefficients ai represent the number a in dyadic 

calculus. Therefore, the value of the function fa (P1, …, Pn) in the row i = (i1…in) = i12
0 

+…+in2
n-1 equals to ai (= 0 or 1).  

 The tables exhibit high symmetry. Note that the table of n ‘letters’ many times contains 

tables for the numbers of letters from 1 to n – 1. Each row i is periodic with the period 2i+1. 

In the first four rows the foregoing table 2 for 2 letters is periodically repeated, in the first 

eight rows the table 8256 for 3 letters is repeated and so on.  

 As it was said earlier, the row )...(
1210 −

= naaaa describes not only the natural 

number a, but also the dyadic expansion 
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i.e., the set of columns is a set of fractions with denominator 
n22 and arbitrary numerators 

from 0 to 
n22 - 1. Upon unrestricted growth of n the table UT(2n-1) tends to UT and will 

include any partial sum of any Cauchy sequence, that is, the whole set of the dyadic 
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fractions, however in this process each fraction 0.a will have the proper ‘number’ a! 

Therefore, the one-to-one correspondence is ‘established’ between two sets – the set of 

dyadic fractions and the set of natural numbers. According to the generally accepted 

agreement this means the potential equality c = 0 in contradiction with the Cantor’s 

relation c  0. 

 

2. Some consequences of the equality c = 0. 

 

Let us discuss the possible reasons of the difference between the received above result  

c = 0 and the common Cantor’s inequality c  0. Cantor proved it using so called 

diagonal method by direct construction of the hypothetical dyadic fraction which is not 

contained in any sequence of such fractions indexed by natural number system. However, 

this hypothetical fraction must begin as 0.1… to differ from the zero-order column, as 

0.11… to differ from the first column, as 0.111… to differ from the second column and so 

on. That is, the fraction under question is the periodical fraction 0.(1) = 0.(11) = …, which is 

positioned in the universal table indefinitely far from the beginning and which is identified 

according to the rule (3) with the natural number 1 (one). So, under the used manner of 

numbering of dyadic fractions the diagonal method of Cantor runs idle: instead of the 

desired non-numbered fraction it results in the integer number 1. The ‘number’ of the 

corresponding column is virtually the ‘greatest’ natural number 111…1…, which may be 

symbolized as (1) = (11) = … [999…9… = (9) in decimal calculus]. This virtual number 

could be identified in the present (Cantor’s) hierarchy of the transfinite numbers as the 

smallest ordinal .  

In the binary number system non-reducible fractions p/q, in which denominators q 

contain odd prime multiples, are also located infinitely far in the universal table. They 

correspond to periodic or combined periodic fractions of the type 0.a(b), where a, b are 

finite natural numbers. The numbers a(b) of these fractions are already infinite. So, infinity 

in this situation appears as the result of conventional use of the positional systems of 

calculation in arithmetic. 

We note further that each column of the table 1 may be put into one-to one 

correspondence not only with its number a  a0a1a2…ai… or the conforming dyadic fraction 

0.a (see eqs. (1), (2)), but also with some subset of the natural series {i1(a), i2(a), …}, in 

which the index ik runs over the indices of equal to 1 constituents ai of the sequence 

a0a1a2…ai…. For instance, the 11-th column of the table corresponds to its dyadic number 

1101, the fraction 0.1101 and a subset {0, 1, 3} of the natural series.  

So, by means of the direct construction the one-to-one correspondence is established 

between three types of sets: infinite series (natural number sequence), the set of all dyadic 

(and obviously all r-adic) fractions and the set of all subsets of infinite series. We note at 

once that such correspondence between natural series and the set of all its subsets 

contradicts to the famous Cantor’s theorem, which in essence reminds his diagonal method 

and also may be called in question. 

The number of elements (power, cardinality) of the set of all subsets of the finite set of 

the order n is known to be equal to 2n. It is natural to designate the cardinality of the set of 

all subsets of the natural number series as 20. According to Cantor, 20 = c. Along with the 

inequality c > 0 this leads to the chain of cardinal numbers 

0  с  2с  … ,                                                        (6) 

which is somewhat more meaningful than the “misty” chain of alephs (3) containing the 

chain (6). The proposal that two chains (3) and (6) coincide is called the generalized 

continuum hypothesis. The statement c = 0 converges all infinite cardinal numbers to the 

single one – some conditional designation of the Aristotelian potential infinity ( in usual 

practice). However, this statement can be confidently applied only to the Cantor’s sets with 

distinguishable elements. Evidently, the ‘whole’ continuum is a non-Cantorian set, while 
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everywhere dense set of rational fractions and a set of algebraic numbers are Cantorian. The 

pointed sets of numbers differ not by their cardinality, but by their continuity. 

 Different monotonically growing functions of the type n2, 2n, n!, lg n are distinguished 

by the velocity of their “perpetual motion” to the infinity. This allows to speak about 

infinitely greats (may be, it is better to say arbitrarily (indefinitely?) greats, AG) of the type 

O(n2), O(2n), O(n!), O(lg n). The comparison of sequences (n), (n2) and (2n) testify to the 

equality of their cardinalities, though in Cantorian conception the exponential function 

definitely stands apart. 

       Similarly, the infinitesimals (arbitrary smalls) of the type o(1/n), o(1/2n), o(1/n!) and so 

on are related to the infinite fragmentation of the unit. So, some symmetry can be 

established between zero and infinity: infinity is somewhat inaccessible, zero is something 

which is not existent, naught. Zero, as a result of infinite fragmentation of unit, is 

inaccessible as much as infinity. So, it exists only virtually. 

 The notion ‘unit’ in the science is used, first of all, as a unit of measurement. The units 

of measurement in standard system are close to the human being parameters – kilogram, 

meter, second. In other systems units may differ from standard ones by many millions times. 

As units for measuring of angles the degrees and radians are used, 180 degrees being equal 

to  radians. Therefore. the unit in principle may be considered as a representative of an 

arbitrary finite real number.  

 Zero, unit and appearing in the process of infinite succession integer numbers constitute 

the natural number series, “given by God” as said by L. Kroneker.  

 

Conclusion. 

  As it was mentioned above the introduction of the set theory into mathematics as its 

foundation was accompanied by lively discussions. The enthusiastic comments of D. Hilbert 

and B. Russell alternated with critical statements by A. Poincare an G. Weyl. Poincare 

wrote in 1908: “Later generations will regard set theory as a disease from which one has 

recovered”. The fact, that the set theory along with the Cantor’s concept of infinity took the 

firm position in mathematics, may be accompanied by the remark of J. von Neumann to F. 

Smith: “Young man, in mathematics you don’t understand things. You just get used to 

them”. Or, as M. Plank once said referring to the quantum mechanics: “A scientific truth 

does not triumph by convincing its opponents and making them see the light, but rather 

because its opponents eventually die, and a new generation grows up that is familiar with 

it.” However, in the process of development of science it is natural to return from time to 

time to discussion moments of its history. 

 The mathematics, as A. Einstein wrote in 1921, “owes its existence to the need … of 

learning something about the behavior of real objects”. “As far as the propositions of 

mathematics refer to reality, they are not certain; and as far as they are certain, they do not 

refer to reality”. Indeed, the very processes of picking out of objects under study from 

surroundings and measurement influence somehow the results of investigation. The 

precision of measurements is always finite. The growth of precision is ‘supplemented’ by 

the growth of complexity of apparatus. So, in view of possible applications in natural 

sciences, infinity and infinite precision are accessible only virtually, in mind. An existence 

of different stages of infinity, in fact postulated by Cantor, seems to be not sufficiently 

grounded. Besides, some questions connected with the choice of systems of axioms arise. 

 In applied mathematics there is no necessity to structure infinity by cardinalities. The 

natural series is great enough, and any finite number series as great as desired may be 

considered as the very beginning of it. It is great enough as to digitize all sciences of the 

present and future. 

As the practical problems are solved, what may be considered as the steps of the 

building of science, the necessity to take care of foundation – logic, set theory – arises. This 
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produces extra emotional background for scientists which is well described by the following 

citation from the essay “Mathematics and logic” by G. Weyl (1946): 

 “From this historical essay the following is quite clear: we all less and less believe to 

the presence of sufficient grounds of logic and mathematics. As all in the modern world we 

have our own ‘crisis’. And it lasts already about half century. From outside it is hardly 

noticeable that this crisis interferes our everyday work; however I myself, for instance, 

must confess that it leaves the deep mark on all my mathematical work … It constantly 

damps enthusiasm and resolution with which I set to my scientific researches.” 
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